Skip to main content

🔥 Load Test LiteLLM

How to run a locust load test on LiteLLM Proxy​

  1. Add fake-openai-endpoint to your proxy config.yaml and start your litellm proxy litellm provides a free hosted fake-openai-endpoint you can load test against
model_list:
- model_name: fake-openai-endpoint
litellm_params:
model: openai/fake
api_key: fake-key
api_base: https://exampleopenaiendpoint-production.up.railway.app/
  1. pip install locust

  2. Create a file called locustfile.py on your local machine. Copy the contents from the litellm load test located here

  3. Start locust Run locust in the same directory as your locustfile.py from step 2

    locust

    Output on terminal

    [2024-03-15 07:19:58,893] Starting web interface at http://0.0.0.0:8089
    [2024-03-15 07:19:58,898] Starting Locust 2.24.0
  4. Run Load test on locust

    Head to the locust UI on http://0.0.0.0:8089

    Set Users=100, Ramp Up Users=10, Host=Base URL of your LiteLLM Proxy

  5. Expected Results

    Expect to see the following response times for /health/readiness Median → /health/readiness is 150ms

    Avg → /health/readiness is 219ms

Load Test LiteLLM Proxy - 1500+ req/s​

1500+ concurrent requests/s​

LiteLLM proxy has been load tested to handle 1500+ concurrent req/s

import time, asyncio
from openai import AsyncOpenAI, AsyncAzureOpenAI
import uuid
import traceback

# base_url - litellm proxy endpoint
# api_key - litellm proxy api-key, is created proxy with auth
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")


async def litellm_completion():
# Your existing code for litellm_completion goes here
try:
response = await litellm_client.chat.completions.create(
model="azure-gpt-3.5",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
)
print(response)
return response

except Exception as e:
# If there's an exception, log the error message
with open("error_log.txt", "a") as error_log:
error_log.write(f"Error during completion: {str(e)}\n")
pass


async def main():
for i in range(1):
start = time.time()
n = 1500 # Number of concurrent tasks
tasks = [litellm_completion() for _ in range(n)]

chat_completions = await asyncio.gather(*tasks)

successful_completions = [c for c in chat_completions if c is not None]

# Write errors to error_log.txt
with open("error_log.txt", "a") as error_log:
for completion in chat_completions:
if isinstance(completion, str):
error_log.write(completion + "\n")

print(n, time.time() - start, len(successful_completions))
time.sleep(10)


if __name__ == "__main__":
# Blank out contents of error_log.txt
open("error_log.txt", "w").close()

asyncio.run(main())

Throughput - 30% Increase​

LiteLLM proxy + Load Balancer gives 30% increase in throughput compared to Raw OpenAI API

Latency Added - 0.00325 seconds​

LiteLLM proxy adds 0.00325 seconds latency as compared to using the Raw OpenAI API

Testing LiteLLM Proxy with Locust​

  • 1 LiteLLM container can handle ~140 requests/second with 0.4 failures

Load Test LiteLLM SDK vs OpenAI​

Here is a script to load test LiteLLM vs OpenAI

from openai import AsyncOpenAI, AsyncAzureOpenAI
import random, uuid
import time, asyncio, litellm
# import logging
# logging.basicConfig(level=logging.DEBUG)
#### LITELLM PROXY ####
litellm_client = AsyncOpenAI(
api_key="sk-1234", # [CHANGE THIS]
base_url="http://0.0.0.0:4000"
)

#### AZURE OPENAI CLIENT ####
client = AsyncAzureOpenAI(
api_key="my-api-key", # [CHANGE THIS]
azure_endpoint="my-api-base", # [CHANGE THIS]
api_version="2023-07-01-preview"
)


#### LITELLM ROUTER ####
model_list = [
{
"model_name": "azure-canada",
"litellm_params": {
"model": "azure/my-azure-deployment-name", # [CHANGE THIS]
"api_key": "my-api-key", # [CHANGE THIS]
"api_base": "my-api-base", # [CHANGE THIS]
"api_version": "2023-07-01-preview"
}
}
]

router = litellm.Router(model_list=model_list)

async def openai_completion():
try:
response = await client.chat.completions.create(
model="gpt-35-turbo",
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True
)
return response
except Exception as e:
print(e)
return None


async def router_completion():
try:
response = await router.acompletion(
model="azure-canada", # [CHANGE THIS]
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
stream=True
)
return response
except Exception as e:
print(e)
return None

async def proxy_completion_non_streaming():
try:
response = await litellm_client.chat.completions.create(
model="sagemaker-models", # [CHANGE THIS] (if you call it something else on your proxy)
messages=[{"role": "user", "content": f"This is a test: {uuid.uuid4()}"}],
)
return response
except Exception as e:
print(e)
return None

async def loadtest_fn():
start = time.time()
n = 500 # Number of concurrent tasks
tasks = [proxy_completion_non_streaming() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
print(n, time.time() - start, len(successful_completions))

# Run the event loop to execute the async function
asyncio.run(loadtest_fn())